

    
      Navigation

      
        	
          next

        	Leela 3.2.0 documentation 
 
      

    


    
      
          
            
  
Leela project

Leela is a system that allows you to store, retrieve and monitor the
performance metrics of your systems in real-time using a variety of
protocols.

For data collection, currently you can use collectd [http://collectd.org] or a fairly simple text protocol over
UDP. This gives you a decent coverage of standard
systems and applications at the same making it very easy to collect
custom metrics.

Data retrieval can be done using a restful API
which makes it easier to create dashboards, analyze historical data or
simply plot graphs in the browser.

You can even monitor real-time data using XMPP protocol. Simply
register a query and you will start receiving events in JSON as soon
as they are received by the server.


General


	Leela Architecture

	Installing from Source

	Installing the Debian Package

	Roadmap






Administrators


	Configuring leela

	Configuring cassandra

	Configuring ejabberd

	Configuring redis

	Monitoring and tuning






Users


Writing


	Collectd interface

	UDP interface






Querying


	REST API

	Dashboard






Monitoring


	XMPP interface

	DMPROC protocol






Developers


	Javascript library

	Python library

	Ruby library

	Haskell library








Changelog


	https://github.com/locaweb/leela/blob/master/CHANGELOG






License

APACHE 2.0




Author


	dgvncsz0f <dsouza@c0d3.xxx>






Contributors


	Juliano Martinez [former Author (v0.0.9)]

	Rodrigo Sampaio Vaz












          

      

      

    


    
         Copyright 2013, Diego Souza.
      Created using Sphinx 1.3.4.
    

  

    
      Navigation

      
        	
          next

        	
          previous |

        	Leela 3.2.0 documentation 
 
      

    


    
      
          
            
  
Leela Architecture

Leela is designed to run on Linux. Although I believe it should works
on other POSIX platforms, the only environment we have tested it is
Linux.

It makes heavy use of unix sockets (mostly datagrams) and is currently
written in python and haskell. The following diagram summarizes the
major components:


In the above diagram all components communicate using unix sockets,
but external systems [cassandra, redis-server and ejabberd] which use
TCP. This [the use of unix sockets] implies that everything must run
on the same machine, or that you will a machine with a reasonable
number of cores to sustain high loads.

Following we provide more details about each component and how they
interact with each other.


Leela UDP/Collectd

They simply parse the packet and forward to the timeline using the
leela internal protocol.




Leela HTTP

This exposes the rest API which allows you to retrieve historical
data. It reads data from cassandra directly but in the future all
reading and writing to the storage will be go through the
leela-storage service.

The HTTP provides a read/write interface. Writing are simply forward
to the timeline, as the previous components do.




Timeline

This is the only component that effectively knows about metrics. You
may think of it as a function that takes a metric and produces one
or more events [an event is just a gauge type].

The process exposes the following unix sockets:


The databus socket is the one metrics should arrive. Each frontend
[udp, collectd, http] writes one or more metrics into it. Then, if any
given metric generates any event then the timeline writes them into
the connected peers. This is done using the multicast unix socket.

Interested processes should continuously register themselves using the
multicast socket in order to receive the events that the timeline
generates.

The reason this must be a continuous operation is that the timeline
purges dead nodes, i.e., nodes that are not sending register messages
in a timely manner.




DMPROC


This is the engine that allows users to monitor metrics as soon as
they are received. Once started, it register itself in timeline in
order to receive events into the databus socket, and exposes its
service through the proc socket.

The proc socket is the only one that is stream oriented. The
protocol is fairly simple though. It prefixes all packets with its
size, using a unsigned short [2 bytes] big endian encoded.

0                       2
|           |           |
------------+-----------+
|         size          |
+-----------------------+
|                       |
|        payload        |
|        (0-65k)        |
|                       |
+-----------------------+








Leela XMPP

Exposes its services as an user of a XMPP service using a language
that resembles SQL. This module allows one to monitor metrics in real
time via XMPP.


The redis is used as a directory service. When a request is made by a
user an new entry is written into the redis. Periodically, leela
xmpp service reads from redis in order to know which users are
requesting information. When a new entry is found, it establishes a
connection with dmproc and any output is forwarded via XMPP to the
users requesting the information. Similarly, whenever an entry is
removed from redis the associated connection with dmproc is closed.

The load on a redis server is very low, but it is extremely important
to make sure it is always available. If the redis service become
unavailable, so does the leela-xmpp.







          

      

      

    


    
         Copyright 2013, Diego Souza.
      Created using Sphinx 1.3.4.
    

  

    
      Navigation

      
        	
          next

        	
          previous |

        	Leela 3.2.0 documentation 
 
      

    


    
      
          
            
  
Installing the Debian Package

Currently we don’t provide any binary packages, so you must build it
on your own. Although the package is suitable for using with debian
stables [= squeeze at the time we wrote this] building it depends on
packages only found on experimental branch: ghc and
cabal-install.

If you can workaround these, building it should be fairly
straightforward:

$ git clone git://github.com/locaweb/leela.git
$ cd leela
$ debuild





After that you can install it using dpkg:

$ sudo dpkg -i ../leela_<version>_<arch>.deb
$ sudo apt-get -f install









          

      

      

    


    
         Copyright 2013, Diego Souza.
      Created using Sphinx 1.3.4.
    

  

    
      Navigation

      
        	
          next

        	
          previous |

        	Leela 3.2.0 documentation 
 
      

    


    
      
          
            
  
Installing the Linux Tarball

This method uses virtualenv to install leela.


Requirements


	python2

	virtualenv

	ghc7

	cabal



On arch linux, the above can be fulfilled using pacman:

$ pacman -S python2-virtualenv cabal-install





Now, download the latest release from github and build it:

$ wget -Oleela-v2x.tar.gz https://github.com/locaweb/leela/archive/v2.x.tar.gz
$ tar -xf leela-v2x.tar.gz
$ cd leela-2.x
$ make bootstrap
$ make dist-build





And install it:

$ root=/opt/leela
$ make dist-install root=$root





You should check the configuration file [= $root/etc/leela.conf] and
make sure everything checks out. After that, start the service.

$ $root/etc/init.d/leela start











          

      

      

    


    
         Copyright 2013, Diego Souza.
      Created using Sphinx 1.3.4.
    

  

    
      Navigation

      
        	
          next

        	
          previous |

        	Leela 3.2.0 documentation 
 
      

    


    
      
          
            
  
dmproc

This is the stream processor engine, which is a fancy name to a
component that is able to apply functions over a set of events.

It is important to notice that you do not interact with this directly.
Rather it is used by other components, like xmpp, to fulfill a
user request.

Nevertheless, as the functions available here are usually used as-is
by users through these higher level components, the first part of
this documentation focuses on the available functions, whereas the
second part contains detailed explanation about the protocol.


Function syntax

Each function contains a name, usually as ascii encoded string,
followed by zero or more arguments. For instance, the maximum
function, which computes the maximum value of a set of events, takes
no arguments. Operators are the sole exception to this rule, as they
are enclosed by parenthesis or brackets. Currently all functions (as
well as operators) depends only on the input. They will only produce a
result when it receives one or more events. In other words, they are
pure functions.

You may compose functions using the | (pipe) operator which
resembles greatly the unix pipe operator. So you may think of each
function as a combinator and using the pipe operator allow you to grow
bigger pipelines. For instance, suppose you have a event that ranges
from 0 to 1, the following function should compute the mean of
the current set of events and then multiply this value by 100 (left
to right application), only returning those greater than 50:

mean | (* 100) | [> 50]





Operators are always enclosed by parenthesis or brackets. Parenthesis
are used for arithmetic operators whereas brackets are used for
comparison operators. The syntax allow the operator to be placed
either on the left or right side. For instance, (/ 100) will
divide by 100 whereas (100 /) will divide 100 by the value of the
event. The same applies for comparison operators.

There are four arithmetic operators defined:
*, +, - and /, which respectively computes the
multiplication, addition, subtraction and division.

And there are six comparison operators defined: > [greater than],
< [less than], >= [greater than or equal to], <= [less
than or equal to], = [equal to] and /= [not equal to].




Functions reference


abs

Computes the absolute value a number.




ceil

Smallest integral value that is not less than the current number.




floor

Largest integral value not greater than the current value.




round

Round towards infinity.




truncate

Round towards zero.




mean

The mean of the set of events.




sma :n

Computes the simple moving average [http://en.wikipedia.org/w/index.php?title=Moving_average&oldid=516268388#Simple_moving_average]. The
actual implementation makes use of ewma using 1-2/(n+1) as the alpha parameter.




ewma :alpha

Computes the exponential weighted moving average [http://en.wikipedia.org/w/index.php?title=Moving_average&oldid=545251643#Exponential_moving_average]
using :alpha as the alpha parameter.

Arguments:





	n:	A positive integer number;








sample :n/:m

Samples n elements out from a population of m items. The exact
frequency of elements generated by this function is defined as
follows. Let L the total of elements:

n * (L (mod m)) + minimum n (L (mod m))





Arguments:





	n:	The number of elements pick out of m;


	m:	The so called population size;





Example::

sma 30 | sample 1/5








minimum

The minimum value.




maximum

The maximum value.




prod

Multiplication of all values in the stream.




sum

Summation of all values in the stream.




window :n :pipeline

Creates an window of n items and when this is full applies a
function to produce a result.

Arguments:





	n:	An positive integer number [ n > 0 ], which defines the size
of the window;


	pipeline:	The function to apply, enclosed with parenthesis. You may
use the pipe to combine multiple functions, and all
functions here defined but sma, sample and
window;





Example::

window 30 (mean | (* 100))








id

The identity function: id x == x.






Operators reference


Arithmetic





	+:	Addition (e.g.: (+ n) or (n +));


	-:	Subtraction (e.g.: (- n) or (n -));


	*:	Multiplication (e.g.: (* n) or (n *));


	/:	Division (e.g.: (/ n) or (n /));








Comparison





	>:	Greater than (e.g: [> n] or [n >])


	>=:	Greater than or equal to (e.g: [>= n] or [n >=])


	<=:	Less than equal to (e.g: [<= n] or [n <=])


	>:	Less than (e.g: [< n] or [< n])


	=:	Equal to (e.g: [n =] or [= n])


	/=:	Not equal to (e.g: [n /=] or [/= n])













          

      

      

    


    
         Copyright 2013, Diego Souza.
      Created using Sphinx 1.3.4.
    

  

    
      Navigation

      
        	
          next

        	
          previous |

        	Leela 3.2.0 documentation 
 
      

    


    
      
          
            
  
REST API

This exposes datas via a REST interface. The following should apply
to all resources:


	All resources support the JSON-P protocol by appending the
callback parameter to the URL:

/v1/foobar?callback=my_handler







	You may add debug=true to enable debugging information. This can
give you a hint of what went wrong:

/v1/foobar?debug=true










Common Response Codes





	2xx:	Ok;


	4xx:	Client error;


	5xx:	Server error;


	200:	Success;


	201:	Created;


	404:	The requested data could not be found [invalid range, missing
event etc.];


	400:	You did something wrong;


	500:	Internal server error;








Error Responses

They will always come using the following format:

{"status": int, "reason": string}









	status:	the http response code [e.g. 404, 500];


	reason:	a very short description of what went wrong [might not be that useful though, use debug=true for more context];








Resources


/v1/data/:year/:month/:key




/v1/:year/:month/:key


Method: GET

Retrieves all events/data withing a given month.





	status:	
	200 ok

	404 not found

	400 invalid range

	xxx error






	query string:	
	nan=purge: Removes all nan/infinty from the response;

	nan=allow: The default, allow nan/infinity values to appear on the response;














/v1/data/:year/:month/:day/:key




/v1/:year/:month/:day/:key


Method: GET

Retrieves all events/data withing a given day.





	status:	
	200 ok

	404 not found

	xxx error






	query string:	
	nan=purge: Removes all nan/infinty from the response;

	nan=allow: The default, allow nan/infinity values to appear on the response;














/v1/data/past24/:key




/v1/past24/:key


Method: GET

Retrieves data/events from the past 24 hours.





	status:	
	200 ok

	404 not found

	xxx error






	query string:	
	nan=purge: Removes all nan/infinty from the response;

	nan=allow: The default, allow nan/infinity values to appear on the response;














/v1/data/pastweek/:key




/v1/pastweek/:key


Method: GET

Retrieves data/events from the past week.





	status:	
	200 ok

	404 not found

	xxx error






	query string:	
	nan=purge: Removes all nan/infinty from the response;

	nan=allow: The default, allow nan/infinity values to appear on the response;














/v1/data/:key




/v1/:key


Method: GET

Retrieves data/events within a given time range.





	status:	
	200 ok

	404 not found

	400 invalid range

	xxx error






	query string:	
	nan=purge: Removes all nan/infinty from the response;

	nan=allow: The default, allow nan/infinity values to appear on the response;

	start=TIMESPEC: The start time [UTC]. Make sure finish >= start;

	finish=TIMESPEC: The finish data [UTC];









TIMESPEC uses the the following strftime format:

%Y%m%dT%H%M





Example:

$ curl {endpoint}/v1/foobar?start=20120101T1430&finish=20120101T1500
{ "status": 200,
  "results": ...
}










/v1/:key


Method: POST

Inserts a new metric under this key. The body of the request must be a
valid json and the json must have the following keys:





	status:	
	201 ok

	400 bad/missing required values

	xxx error






	parameters:	
	type: One of gauge, counter, derive, absolute

	name: [optional] The name to store this metric. If this is provided, it must match the one given on the path;

	value: The value to store under this key/timestamp;

	timestamp: [optional] Unix timestamp [number of seconds since epoch];









You may also provide a list of metrics as long as theirs names match
the on given on the URL.

Examples:

$ curl -X POST -d '{"type": "gauge", "value": 0.2}' {endpoint}/v1/foobar
{"status": 201,
 "results": [{"name": "foobar", "timestamp": 1366549812, "type": "gauge", "value": 0.2}]
}










/v1/data/:key


Method: PUT

Deprecated: use /POST/




Method: POST

Inserts a new data value under this key. The body of the request must
be a valid json, and the json must have the following keys:





	status:	
	201 ok

	400 bad/missing required values

	xxx error






	parameters:	
	name: [optional] The name to store this object. This must match the name given on the URL;

	value: The value to store under this key/timestamp;

	timestamp: [optional] Unix timestamp [number of seconds since epoch];









You may use this resource to store up to 8k bytes worth of data [in
the value field]. You may also provide a list of values [as long
as theirs names match the one given on the URL] in which case each
item of the list is subject to this limit.

Example:

$ curl -X POST -d '{"value": :VALUE, "timestamp": 1352483918}' {endpoint}/v1/data/foobar
{ "status": 201,
  "results": [{"name": "foobar", "timestamp": 1352483918, "value": :VALUE}]
}















          

      

      

    


    
         Copyright 2013, Diego Souza.
      Created using Sphinx 1.3.4.
    

  

    
      Navigation

      
        	
          next

        	
          previous |

        	Leela 3.2.0 documentation 
 
      

    


    
      
          
            
  
UDP Interface

This is a write-only interface. It uses UDP and the protocol is plain
text. The protocol is fairly simple:

<type> <length>|<key> <value>[ timestamp];









	type:	
	gauge

	derive

	counter

	absolute






	length:	The size of the key string;




	key:	Any string (ascii encoded), up to 255 characters;




	value:	Any double value (e.g.: 0.0, nan, 3.2e12);




	timestamp:	[optional] the unix timestamp you want to store this
event. If you don’t provide this value the server will use
the current timestamp;







There is no ack [=confirmation the event was received], nor
authentication, nor checksum [application level] whatsoever. If you
need such a feature, use a different protocol [e.g. collectd].

N.B.: There is no trailing newline here. Adding a trailing newline is a parser error.


PING

The UDP protocol is also capable of receiving a PING message that can
use used to test connectivity. The syntax is as follows:

ping\n








Examples

Assuming you have netcat, and the server up and running, the following
shell commands should work:

# the ping message
$ echo ping                                      | nc -u localhost 6968
pong

$ echo -n "gauge 10|example.e0 0.75 1350332001;" | nc -u localhost 6968
$ echo -n "derive 10|example.e0 0.76;"           | nc -u localhost 6968








Legacy udp protocol

This protocol is deprecated. It will be removed in future releases:

<name>: <value>[ timestamp]\n











          

      

      

    


    
         Copyright 2013, Diego Souza.
      Created using Sphinx 1.3.4.
    

  

    
      Navigation

      
        	
          previous

        	Leela 3.2.0 documentation 
 
      

    


    
      
          
            
  
XMPP Interface

The XMPP protocol allows you to monitor real time events. The
protocol supports a simple query language that enables one to
transform the events in a suitable manner.

The xmpp interface uses a simple request-response protocol and all
commands are executed modulo de current user. In other words, the
commands are isolated by the current user account.

Following a list of commands that are currently supported.


SELECT * FROM leela.xmpp;

Returns the current registered functions. Example:

SELECT * FROM leela.xmpp;
{ "status": 200,
  "results": [ { "cmd": "SELECT id FROM hm6177.cpu.cpu.idle;",
                 "key": "b0acdfe11875c074c760bfa8e34da49c1dfe73bd998bf720efc349c6bfd31d756d9b88f23894dbfe3555bddd2d9d7a890ac09831fe3ad6ea469ca3f52bf3fd0a"
               }
             ]
}





The results entry contains an object with the following keys:





	cmd:	The registered query;


	key:	An opaque string that references this query. You may use this in
a DELETE command to unregister this query;








SELECT :proc FROM :regex;

Registers a new function to monitor real time events. Example:

SELECT id FROM ^.*.cpu.cpu.idle$;
{ "status": 200,
  "results": { "key": "baa7163f7b51c3e96d7ee54e08a147840c1c2a682c89cbae2edd288506954dd568980394a827c1d4fb339e2a928e55ff36c277b73cac9be417a1c80c2086ea6f"
             }
}





The regex is a posix regular expression and proc is a function
to apply over the events that matches the regex. The complete
reference may be found at dmproc.

This command returns an structure with the following keys:





	key:	An opaque string that references this query. You may use this in
a DELETE command to unregister this query;





Then for each event that is generated by the registered function the
following message is created:

{ "status": 200, "results": { "event", { "name": "...",
                                         "timestamp": 1350334144.0,
                                         "value": 0.8553317028766958
                                       }
                            }
}








DELETE FROM leela.xmpp;

Unregister all functions registered for this account. Example:

DELETE FROM leela.xmpp;
{ "status": 200,
  "results": [ { "key": "baa7163f7b51c3e96d7ee54e08a147840c1c2a682c89cbae2edd288506954dd568980394a827c1d4fb339e2a928e55ff36c277b73cac9be417a1c80c2086ea6f"
               }
             ]
}






DELETE FROM leela.xmpp WHERE key=:key;

Unregister a function referenced by a given key. Example:

DELETE FROM leela.xmpp WHERE key=284692849396a112668bbaa3dbc30e9d5c097c31998ec0569938d8cb0aaee9a282852fa56cdfaaf3aa953e76cf40315e399f851c3613a1f560f77a1553bd899e;
{ "status": 200,
  "results": { "key": "284692849396a112668bbaa3dbc30e9d5c097c31998ec0569938d8cb0aaee9a282852fa56cdfaaf3aa953e76cf40315e399f851c3613a1f560f77a1553bd899e"
             }
}










Response structure

All messages follows this structure:

{"status":INTEGER, "debug":OBJECT, "reason":STRING, "results":OBJECT}






Status





	2xx:	Ok;


	200:	Success;


	201:	Created;


	4xx:	Client error;


	404:	The requested data could not be found (invalid range, missing
event etc.);


	400:	You did something wrong;


	5xx:	Server error;


	500:	Internal server error;


	503:	Maintanance;








Reason

In case of an error, this provides an human readable message to help
you debug the root cause.




Results

The object you requested for. This vary greatly depending on the command.









          

      

      

    


    
         Copyright 2013, Diego Souza.
      Created using Sphinx 1.3.4.
    

  _static/down-pressed.png





_static/ajax-loader.gif






_static/comment-bright.png





_static/up-pressed.png





_static/file.png





_static/plus.png






_static/comment-close.png





_static/up.png





_images/blockdiag-a252737c9522ae8bc71209bcfe749cf2ba3ee1c7.png
teela_udp

Leela_collectd

Leela_http

> tineline

dnproc

]

teelampp |

L

ejabberd

redis-server

leela storage ||

cassandra






_static/minus.png





search.html


    
      Navigation


      
        		Leela 3.2.0 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2013, Diego Souza.
      Created using Sphinx 1.3.4.
    

  

_images/blockdiag-f143852e636dbcf54fc8dd07880112415a26e029.png
tineline

Leela_xnpp

I

jatabus






_static/locaweb.png
LOCAWEB





_images/blockdiag-3ce5dd4a4145a1c02d544db918562ac4f12a77fe.png
S— et






_static/down.png





_static/comment.png





_images/blockdiag-c111cd7319dc186586eb6c351488e9ef88c24d45.png
@t

o






